Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Glioma

Subjects

Abstract

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1–4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of all primary brain and other central nervous system tumours.
Fig. 2: Typical genetic and epigenetic alterations in adult-type and paediatric-type diffuse gliomas according to the 2021 WHO classification of CNS tumours.
Fig. 3: Typical genetic and epigenetic alterations in circumscribed astrocytic gliomas and ependymal tumours according to the 2021 WHO classification of CNS tumours3.
Fig. 4: Biochemical and functional consequences of glioma-associated IDH mutations.
Fig. 5: Neuron–glioma interactions drive glioma pathogenesis.
Fig. 6: Representative axial plane MRI and FET-PET imaging of gliomas in adults.
Fig. 7: Representative histological and immunohistochemical features as well as DNA copy number profiles of exemplary gliomas.
Fig. 8: Therapeutic approaches to IDH-mutant gliomas in adults143.
Fig. 9: Therapeutic approaches to glioblastoma in adults.

Similar content being viewed by others

References

  1. Lamba, N., Wen, P. Y. & Aizer, A. A. Epidemiology of brain metastases and leptomeningeal disease. Neuro Oncol. 23, 1447–1456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol. 25, iv1–iv99 (2023). This article provides the most recent update on the epidemiology of primary brain tumours in the USA.

    Article  PubMed  Google Scholar 

  3. Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021). This review article summarizes the key principles and novel concepts of the 2021 WHO classification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iorgulescu, J. B. et al. Molecular biomarker-defined brain tumors: epidemiology, validity, and completeness in the United States. Neuro Oncol. 24, 1989–2000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leece, R. et al. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro Oncol. 19, 1553–1564 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Girardi, F. et al. Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000–2014 (CONCORD-3). Neuro Oncol. 25, 580–592 (2023).

    Article  PubMed  Google Scholar 

  7. Girardi, F. et al. Global survival trends for brain tumors, by histology: Analysis of individual records for 67,776 children diagnosed in 61 countries during 2000–2014 (CONCORD-3). Neuro Oncol. 25, 593–606 (2023).

    Article  PubMed  Google Scholar 

  8. Barnholtz-Sloan, J. S., Ostrom, Q. T. & Cote, D. Epidemiology of brain tumors. Neurol. Clin. 36, 395–419 (2018).

    Article  PubMed  Google Scholar 

  9. Taylor, A. J. et al. Population-based risks of CNS tumors in survivors of childhood cancer: the British Childhood Cancer Survivor Study. J. Clin. Oncol. 28, 5287–5293 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leary, J. B., Anderson-Mellies, A. & Green, A. L. Population-based analysis of radiation-induced gliomas after cranial radiotherapy for childhood cancers. Neurooncol Adv. 4, vdac159 (2022).

    PubMed  PubMed Central  Google Scholar 

  11. Sadetzki, S. et al. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat. Res. 163, 424–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Hauptmann, M. et al. Brain cancer after radiation exposure from CT examinations of children and young adults: results from the EPI-CT cohort study. Lancet Oncol. 24, 45–53 (2023). This study reports a dose–response relationship between CT-related radiation exposure before the age of 22 years and the development of primary brain tumours, strongly suggesting careful use of CT in children.

    Article  PubMed  Google Scholar 

  13. Deng, M. Y. et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nat. Commun. 12, 5530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DeSisto, J. et al. Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nat. Commun. 12, 5531 (2021). Refs. 13 and 14 provide novel information on the molecular landscape of irradiation-induced gliomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castaño-Vinyals, G. et al. Wireless phone use in childhood and adolescence and neuroepithelial brain tumours: results from the international MOBI-Kids study. Env. Int. 160, 107069 (2022).

    Article  Google Scholar 

  16. Schüz, J. et al. Cellular telephone use and the risk of brain tumors: update of the UK Million Women Study. J. Natl Cancer Inst. 114, 704–711 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Claus, E. B., Cannataro, V. L., Gaffney, S. G. & Townsend, J. P. Environmental and sex-specific molecular signatures of glioma causation. Neuro Oncol. 24, 29–36 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Linos, E., Raine, T., Alonso, A. & Michaud, D. Atopy and risk of brain tumors: a meta-analysis. J. Natl Cancer Inst. 99, 1544–1550 (2007).

    Article  PubMed  Google Scholar 

  19. Disney-Hogg, L. et al. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med. 16, 42 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun, G. et al. Association between polymorphisms in interleukin-4Rα and interleukin-13 and glioma risk: a meta-analysis. Cancer Epidemiol. 37, 306–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Schwartzbaum, J. A. et al. Inherited variation in immune genes and pathways and glioblastoma risk. Carcinogenesis 31, 1770–1777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gutmann, D. H. et al. Neurofibromatosis type 1. Nat. Rev. Dis. Primers 3, 17004 (2017).

    Article  PubMed  Google Scholar 

  23. Coy, S., Rashid, R., Stemmer-Rachamimov, A. & Santagata, S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 139, 643–665 (2020).

    Article  PubMed  Google Scholar 

  24. Northrup, H. et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr. Neurol. 123, 50–66 (2021).

    Article  PubMed  Google Scholar 

  25. Sloan, E. A. et al. Gliomas arising in the setting of Li-Fraumeni syndrome stratify into two molecular subgroups with divergent clinicopathologic features. Acta Neuropathol. 139, 953–957 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guerrini-Rousseau, L. et al. Constitutional mismatch repair deficiency-associated brain tumors: report from the European C4CMMRD consortium. Neurooncol Adv. 1, vdz033 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Suwala, A. K. et al. Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathol. 141, 85–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Bahuau, M. et al. Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res. 58, 2298–2303 (1998).

    CAS  PubMed  Google Scholar 

  29. Choi, D.-J. et al. The genomic landscape of familial glioma. Sci. Adv. 9, eade2675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bainbridge, M. N. et al. Germline mutations in shelterin complex genes are associated with familial glioma. J. Natl Cancer Inst. 107, 384 (2015).

    Article  PubMed  Google Scholar 

  31. Melin, B. S. et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat. Genet. 49, 789–794 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eckel-Passow, J. E. et al. Adult diffuse glioma GWAS by molecular subtype identifies variants in D2HGDH and FAM20C. Neuro Oncol. 22, 1602–1613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yanchus, C. et al. A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation. Science 378, 68–78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reitman, Z. J. et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl Acad. Sci. USA 108, 3270–3275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malta, T. M. et al. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications. Neuro Oncol. 20, 608–620 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018). This study provides evidence for a paracrine, immunosuppressive effect of mutant IDH in the pathogenesis of gliomas.

    Article  CAS  PubMed  Google Scholar 

  40. Mortazavi, A. et al. IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol. 24, 1423–1435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bardella, C. et al. Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30, 578–594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pirozzi, C. J. et al. Mutant IDH1 disrupts the mouse subventricular zone and alters brain tumor progression. Mol. Cancer Res. 15, 507–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Núñez, F. J. et al. IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Sci. Transl. Med. 11, eaaq1427 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Banan, R. et al. Infratentorial IDH-mutant astrocytoma is a distinct subtype. Acta Neuropathol. 140, 569–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Tesileanu, C. M. S., Vallentgoed, W. R., French, P. J. & van den Bent, M. J. Molecular markers related to patient outcome in patients with IDH-mutant astrocytomas grade 2 to 4: a systematic review. Eur. J. Cancer 175, 214–223 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Shirahata, M. et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 136, 153–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Bettegowda, C. et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333, 1453–1455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sahm, F. et al. CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol. 123, 853–860 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Appay, R. et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol. 21, 1519–1528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suwala, A. K. et al. Oligosarcomas, IDH-mutant are distinct and aggressive. Acta Neuropathol. 143, 263–281 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. An, Z., Aksoy, O., Zheng, T., Fan, Q.-W. & Weiss, W. A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37, 1561–1575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim, M., Xia, Y., Bettegowda, C. & Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018). This study established the central new role of DNA methylation profiling as a diagnostic tool in neuro-oncology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryall, S. et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 37, 569–583.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qaddoumi, I. et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 131, 833–845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huse, J. T. et al. Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol. 133, 417–429 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Ida, C. M. et al. Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): molecular profiling confirms frequent MAPK pathway activation. J. Neuropathol. Exp. Neurol. 80, 821–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mackay, A. et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32, 520–537.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Castel, D. et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 130, 815–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Castel, D. et al. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathol. 139, 1109–1113 (2020).

    Article  PubMed  Google Scholar 

  63. Mondal, G. et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol. 139, 1071–1088 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sievers, P. et al. A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol. 23, 34–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Wu, G. et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46, 444–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Harutyunyan, A. S. et al. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat. Commun. 10, 1262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Crowell, C. et al. Systematic review of diffuse hemispheric glioma, H3 G34-mutant: outcomes and associated clinical factors. Neurooncol Adv. 4, vdac133 (2022).

    PubMed  PubMed Central  Google Scholar 

  69. Lucas, C.-H. G. et al. Diffuse hemispheric glioma, H3 G34-mutant: genomic landscape of a new tumor entity and prospects for targeted therapy. Neuro Oncol. 23, 1974–1976 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Clarke, M. et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov. 10, 942–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guerreiro Stucklin, A. S. et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 10, 4343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660.e17 (2020). Refs. 72 and 73 identify major differences in the tumour microenvironment of primary versus metastatic brain tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan, Y. et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594, 277–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Venkataramani, V. et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 185, 2899–2917.e31 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Taylor, K. R. et al. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 623, 366–374 (2023). Here, BDNF–TRKB signalling is identified as a pathway that may promote the activity of neuron glioma synaptic plasticity and augment tumour progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hausmann, D. et al. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature 613, 179–186 (2023). Glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and thereby activate frequency-dependent MAPK and NF-κB signalling.

    Article  CAS  PubMed  Google Scholar 

  82. Mathur, R. et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell 187, 446–463.e16 (2024).

    Article  CAS  PubMed  Google Scholar 

  83. Jones, D. T. W. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jones, D. T. W. et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet. 45, 927–932 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sievers, P. et al. Posterior fossa pilocytic astrocytomas with oligodendroglial features show frequent FGFR1 activation via fusion or mutation. Acta Neuropathol. 139, 403–406 (2020).

    Article  PubMed  Google Scholar 

  86. Gronych, J. et al. An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. J. Clin. Invest. 121, 1344–1348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reinhardt, A. et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 136, 273–291 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Cimino, P. J. et al. Expanded analysis of high-grade astrocytoma with piloid features identifies an epigenetically and clinically distinct subtype associated with neurofibromatosis type 1. Acta Neuropathol. 145, 71–82 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Vaubel, R. et al. Biology and grading of pleomorphic xanthoastrocytoma-what have we learned about it? Brain Pathol. 31, 20–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Alexandrescu, S. et al. Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas-same entity or first cousins? Brain Pathol. 26, 215–223 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Robinson, J. P. et al. Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation. Oncogene 29, 335–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Ebrahimi, A. et al. Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathol. Commun. 10, 5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, J. et al. Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev. 25, 1595–1600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chan, J. A. et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol. 63, 1236–1242 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Franz, D. N. et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann. Neurol. 78, 929–938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosenberg, S. et al. A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas. Nat. Commun. 9, 2371 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Goode, B. et al. A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nat. Commun. 9, 810 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lucas, C.-H. G. et al. EWSR1-BEND2 fusion defines an epigenetically distinct subtype of astroblastoma. Acta Neuropathol. 143, 109–113 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Rossi, S. et al. Paediatric astroblastoma-like neuroepithelial tumour of the spinal cord with a MAMLD1–BEND2 rearrangement. Neuropathol. Appl. Neurobiol. 48, e12814 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Rudà, R. et al. EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro Oncol. 20, 445–456 (2018).

    Article  PubMed  Google Scholar 

  101. Pajtler, K. W. et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27, 728–743 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thomas, C. et al. TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma. Acta Neuropathol. 141, 959–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parker, M. et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 451–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kupp, R. et al. ZFTA translocations constitute ependymoma chromatin remodeling and transcription factors. Cancer Discov. 11, 2216–2229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng, T. et al. Cross-species genomics reveals oncogenic dependencies in ZFTA/C11orf95 fusion-positive supratentorial ependymomas. Cancer Discov. 11, 2230–2247 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Arabzade, A. et al. ZFTA–RELA dictates oncogenic transcriptional programs to drive aggressive supratentorial ependymoma. Cancer Discov. 11, 2200–2215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jünger, S. T. et al. CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathol. 140, 405–407 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pajtler, K. W. et al. YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nat. Commun. 10, 3914 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sievers, P. et al. Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathol. 142, 827–839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pajtler, K. W. et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 136, 211–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Michealraj, K. A. et al. Metabolic regulation of the epigenome drives lethal infantile ependymoma. Cell 181, 1329–1345.e24 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baroni, L. V. et al. Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro Oncol. 23, 1360–1370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Donson, A. M. et al. Significant increase of high-risk chromosome 1q gain and 6q loss at recurrence in posterior fossa group A ependymoma: a multicenter study. Neuro Oncol. 25, 1854–1967 (2023).

    Article  PubMed  Google Scholar 

  114. Witt, H. et al. DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro Oncol. 20, 1616–1624 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cavalli, F. M. G. et al. Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol. 136, 227–237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ebert, C. et al. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am. J. Pathol. 155, 627–632 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ghasemi, D. R. et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 138, 1075–1089 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bockmayr, M. et al. Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro Oncol. 24, 1689–1699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Avila, E. K. et al. Brain tumor-related epilepsy management: a Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol. 26, 7–24 (2024).

    Article  PubMed  Google Scholar 

  120. Suh, C. H., Kim, H. S., Jung, S. C., Choi, C. G. & Kim, S. J. 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol. 20, 1573–1583 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Galldiks, N. et al. Investigational PET tracers in neuro-oncology—what’s on the horizon? A report of the PET/RANO group. Neuro Oncol. 24, 1815–1826 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Albert, N. L. et al. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group. Lancet Oncol. 25, e29–e41 (2024).

    Article  PubMed  Google Scholar 

  123. Brat, D. J. et al. Molecular biomarker testing for the diagnosis of diffuse gliomas. Arch. Pathol. Lab. Med. 146, 547–574 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sahm, F. et al. Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline. Neuro Oncol. 25, 1731–1749 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Capper, D., Zentgraf, H., Balss, J., Hartmann, C. & von Deimling, A. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol. 118, 599–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Ellison, D. W. et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAFV600E mutation. Acta Neuropathol. 137, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Bandopadhayay, P. et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat. Genet. 48, 273–282 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hegi, M. E. et al. MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: a pooled analysis of four clinical trials. Clin. Cancer Res. 25, 1809–1816 (2019).

    Article  PubMed  Google Scholar 

  129. Bady, P., Delorenzi, M. & Hegi, M. E. Sensitivity analysis of the MGMT-STP27 model and impact of genetic and epigenetic context to predict the MGMT methylation status in gliomas and other tumors. J. Mol. Diagn. 18, 350–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Wen, P. Y. et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 23, 53–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Panwalkar, P. et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 134, 705–714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Molinaro, A. M., Taylor, J. W., Wiencke, J. K. & Wrensch, M. R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 15, 405–417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, Y. et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc. Natl Acad. Sci. USA 112, 9704–9709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pitter, K. L. et al. Corticosteroids compromise survival in glioblastoma. Brain 139, 1458–1471 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Walbert, T. et al. SNO and EANO practice guideline update: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neuro Oncol. 23, 1835–1844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Happold, C. et al. Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J. Clin. Oncol. 34, 731–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Roth, P. et al. Neurological and vascular complications of primary and secondary brain tumours: EANO–ESMO Clinical Practice Guidelines for prophylaxis, diagnosis, treatment and follow-up. Ann. Oncol. 32, 171–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Jo, J. et al. Epidemiology, biology, and management of venous thromboembolism in gliomas: an interdisciplinary review. Neuro Oncol. 25, 1381–1394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Eigenbrod, S. et al. Molecular stereotactic biopsy technique improves diagnostic accuracy and enables personalized treatment strategies in glioma patients. Acta Neurochir. 156, 1427–1440 (2014).

    Article  PubMed  Google Scholar 

  140. Stummer, W. et al. Intraoperative fluorescence diagnosis in the brain: a systematic review and suggestions for future standards on reporting diagnostic accuracy and clinical utility. Acta Neurochir. 161, 2083–2098 (2019).

    Article  PubMed  Google Scholar 

  141. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Horbinski, C. et al. NCCN Guidelines® insights: central nervous system cancers, version 2.2022. J. Natl Compr. Canc. Netw. 21, 12–20 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Weller, M. et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 18, 170–186 (2021).

    Article  PubMed  Google Scholar 

  144. Wen, P. Y. et al. RANO 2.0: proposal for an update to the Response Assessment in Neuro-Oncology (RANO) criteria for high- and low-grade gliomas in adults. J. Clin. Oncol. 41, 2017–2017 (2023).

    Article  Google Scholar 

  145. Ellingson, B. M. et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro-Oncol. 17, 1188–1198 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Albert, N. L. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncol. 18, 1199–1208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kros, J. M. et al. Mitotic count is prognostic in IDH mutant astrocytoma without homozygous deletion of CDKN2A/B. Results of consensus panel review of EORTC trial 26053 (CATNON) and EORTC trial 22033-26033. Neuro Oncol. 25, 1443–1449 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Weller, M. et al. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol. 147, 11 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jakola, A. S. et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308, 1881 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Chang, E. F. et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J. Neurosurg. 108, 227–235 (2008).

    Article  PubMed  Google Scholar 

  151. Pallud, J. et al. Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137, 449–462 (2014).

    Article  PubMed  Google Scholar 

  152. Hervey-Jumper, S. L. et al. Interactive effects of molecular, therapeutic, and patient factors on outcome of diffuse low-grade glioma. J. Clin. Oncol. 41, 2029–2042 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pignatti, F. et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J. Clin. Oncol. 20, 2076–2084 (2002).

    Article  PubMed  Google Scholar 

  154. Daniels, T. B. et al. Validation of EORTC prognostic factors for adults with low-grade glioma: a report using Intergroup 86-72-51. Int. J. Radiat. Oncol. Biol. Phys. 81, 218–224 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Miller, J. J. et al. Isocitrate dehydrogenase (IDH) mutant gliomas: a Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro-Oncol. 25, 4–25 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Buckner, J. C. et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N. Engl. J. Med. 374, 1344–1355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lassman, A. B. et al. Joint final report of EORTC 26951 and RTOG 9402: phase III trials with procarbazine, lomustine, and vincristine chemotherapy for anaplastic oligodendroglial tumors. J. Clin.Oncol. 40, 2539–2545 (2022). Long-term follow-up confirms PCV polychemotherapy as standard of care for oligodendroglioma, IDH mutant, CNS WHO grade 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. van den Bent, M. J. et al. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 22, 813–823 (2021). Updated results of the CATNON trial confirm maintenance temozolomide after radiotherapy as standard of care for astrocytoma, IDH mutant, CNS WHO grade 3.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jaeckle, K. A. et al. CODEL: phase III study of RT, RT + TMZ, or TMZ for newly diagnosed 1p/19q codeleted oligodendroglioma. Analysis from the initial study design. Neuro-Oncol. 23, 457–467 (2021).

    Article  PubMed  Google Scholar 

  160. Mohile, N. A. et al. Therapy for diffuse astrocytic and oligodendroglial tumors in adults: ASCO–SNO guideline. J. Clin. Oncol. 40, 403–426 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. van den Bent, M. J. et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366, 985–990 (2005).

    Article  PubMed  Google Scholar 

  162. Shaw, E. et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J. Clin. Oncol. 20, 2267–2276 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Bell, E. H. et al. Comprehensive genomic analysis in NRG Oncology/RTOG 9802: a phase III trial of radiation versus radiation plus procarbazine, lomustine (CCNU), and vincristine in high-risk low-grade glioma. J. Clin. Oncol. 38, 3407–3417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tabrizi, S. et al. Long-term outcomes and late adverse effects of a prospective study on proton radiotherapy for patients with low-grade glioma. Radiother. Oncol. 137, 95–101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. van den Bent, M. J. et al. Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 390, 1645–1653 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cairncross, G. et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J. Clin. Oncol. 31, 337–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. van den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J. Clin. Oncol. 31, 344–350 (2013).

    Article  PubMed  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?term=NCT00887146 (2024).

  169. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kadiyala, P. et al. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J. Clin. Invest. 131, e139542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mellinghoff, I. K. et al. Ivosidenib in isocitrate dehydrogenase 1-mutated advanced glioma. J. Clin. Oncol. 38, 3398–3406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mellinghoff, I. K. et al. Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin. Cancer Res. 27, 4491–4499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. de la Fuente, M. I. et al. Olutasidenib (FT-2102) in patients with relapsed or refractory IDH1-mutant glioma: a multicenter, open-label, phase Ib/II trial. Neuro Oncol. 25, 146–156 (2023).

    Article  PubMed  Google Scholar 

  174. Natsume, A. et al. The first-in-human phase I study of a brain-penetrant mutant IDH1 inhibitor DS-1001 in patients with recurrent or progressive IDH1-mutant gliomas. Neuro Oncol. 25, 326–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Mellinhoff, I. K. et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N. Engl. J. Med. 389, 589–601 (2023).

    Article  Google Scholar 

  176. Turcan, S. et al. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget 4, 1729–1736 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sulkowski, P. L. et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl. Med. 9, eaal2463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. McBrayer, S. K. et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell 175, 101–116.e25 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shi, D. D. et al. De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell 40, 939–956.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 72, 1081–1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?term=NCT03893903 (2022).

  184. Molinaro, A. M. et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 6, 495–503 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Karschnia, P. et al. Prognostic validation of a new classification system for extent of resection in glioblastoma: a report of the RANO resect group. Neuro Oncol 25, 940–954 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Stupp, R. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318, 2306–2316 (2017).

  189. Malmström, A. et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 13, 916–926 (2012).

    Article  PubMed  Google Scholar 

  190. Wick, W. et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Perry, J. R. et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med. 376, 1027–1037 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Gilbert, M. R. et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J. Clin. Oncol. 31, 4085–4091 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Wick, W. et al. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med. 377, 1954–1963 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Sonabend, A. M. et al. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial. Lancet Oncol. 24, 509–522 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Doz, F. et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 24, 997–1007 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. Loriot, Y. et al. Tumor agnostic efficacy and safety of erdafitinib in patients (pts) with advanced solid tumors with prespecified fibroblast growth factor receptor alterations (FGFRalt) in RAGNAR: interim analysis (IA) results. J. Clin.Oncol. 40 (suppl. 16), Abstr. 3007 (2022).

    Article  Google Scholar 

  201. Wen, P. Y. et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 22, 1073–1113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Weller, M. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Ahluwalia, M. S. et al. Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. J. Clin. Oncol. 41, 1453–1465 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Wen, P. Y. et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin. Cancer Res. 25, 5799–5807 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liau, L. M. et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 9, 112 (2023).

    Article  PubMed  Google Scholar 

  206. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Lim, M. et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 24, 1935–1949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Omuro, A. et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase 3 trial. Neuro Oncol. 25, 123–134 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Reardon, D. A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6, 1003–1010 (2020).

    Article  PubMed  Google Scholar 

  211. Jackson, C. M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol. 20, 1100–1109 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Weiss, T. et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci. Transl. Med. 12, eabb2311 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Look, T. et al. Targeted delivery of tumor necrosis factor in combination with CCNU induces a T cell-dependent regression of glioblastoma. Sci. Transl. Med. 15, eadf2281 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chiocca, E. A. et al. Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: an open-label, multi-institutional phase I trial. Neuro Oncol. 24, 951–963 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Todo, T. et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat. Med. 28, 1630–1639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Fisher, P. G. et al. Outcome analysis of childhood low-grade astrocytomas. Pediatr. Blood Cancer 51, 245–250 (2008).

    Article  PubMed  Google Scholar 

  219. Sievert, A. J. & Fisher, M. J. Pediatric low-grade gliomas. J. Child Neurol. 24, 1397–1408 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Packer, R. J. et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg. 86, 747–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  221. Hwang, E. I. et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas: bevacizumab-based treatment in pediatric LGG update. Pediatr. Blood Cancer 60, 776–782 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Bouffet, E. et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J. Clin. Oncol. 30, 1358–1363 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Fangusaro, J. et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 20, 1011–1022 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hargrave, D. R. et al. Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin. Cancer Res. 25, 7303–7311 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Lassaletta, A. et al. Reirradiation in patients with diffuse intrinsic pontine gliomas: the Canadian experience. Pediatr. Blood Cancer 65, e26988 (2018).

    Article  PubMed  Google Scholar 

  226. Amsbaugh, M. J. et al. A phase 1/2 trial of reirradiation for diffuse intrinsic pontine glioma. Int. J. Radiat. Oncol. Biol. Phys. 104, 144–148 (2019).

    Article  PubMed  Google Scholar 

  227. Grasso, C. S. et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 21, 555–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Nagaraja, S. et al. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell 31, 635–652.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lin, G. L. et al. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med. 11, eaaw0064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Przystal, J. M. et al. Imipridones affect tumor bioenergetics and promote cell lineage differentiation in diffuse midline gliomas. Neuro Oncol. 24, 1438–1451 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Chi, A. S. et al. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J. Neurooncol. 145, 97–105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gardner, S. L. et al. Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neurooncol. Adv. 4, vdac143 (2022).

    PubMed  PubMed Central  Google Scholar 

  233. Mount, C. W. et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat. Med. 24, 572–579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Vitanza, N. A. et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat. Med. 27, 1544–1552 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Grassl, N. et al. A H3K27M-targeted vaccine in adults with diffuse midline glioma. Nat. Med. 29, 2586–2592 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Chen, C. C. L. et al. Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183, 1617–1633.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Sweha, S. R. et al. Epigenetically defined therapeutic targeting in H3.3G34R/V high-grade gliomas. Sci. Transl. Med. 13, eabf7860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Jakacki, R. I. et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children’s Oncology Group ACNS0423 study. Neuro Oncol. 18, 1442–1450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Das, A. et al. Efficacy of nivolumab in pediatric cancers with high mutation burden and mismatch repair deficiency. Clin. Cancer Res. 29, 4770–4783 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Rudà, R. et al. EANO-EURACAN-SNO guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. Neuro Oncol. 24, 2015–2034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Karajannis, M. A. et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 16, 1408–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Krueger, D. A. et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 80, 574–580 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bouffet, E. et al. Efficacy and safety of trametinib monotherapy or in combination with dabrafenib in pediatric BRAF V600–mutant low-grade glioma. J. Clin. Oncol. 41, 664–674 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Kaley, T. et al. BRAF inhibition in BRAFV600-mutant gliomas: results from the VE-BASKET study. J. Clin. Oncol. 36, 3477–3484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Rudà, R., Bruno, F., Pellerino, A. & Soffietti, R. Ependymoma: evaluation and management updates. Curr. Oncol. Rep. 24, 985–993 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Gomez, D. R. et al. High failure rate in spinal ependymomas with long-term follow-up. Neuro Oncol. 7, 254–259 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Merchant, T. E. et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol. 22, 3156–3162 (2004).

    Article  PubMed  Google Scholar 

  249. Timmermann, B. et al. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int. J. Radiat. Oncol. Biol. Phys. 46, 287–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  250. Gilbert, M. R. et al. A phase II study of dose-dense temozolomide and lapatinib for recurrent low-grade and anaplastic supratentorial, infratentorial, and spinal cord ependymoma. Neuro Oncol. 23, 468–477 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. IJzerman-Korevaar, M., Snijders, T. J., de Graeff, A., Teunissen, S. C. C. M. & de Vos, F. Y. F. Prevalence of symptoms in glioma patients throughout the disease trajectory: a systematic review. J. Neurooncol. 140, 485–496 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Coomans, M. B. et al. Symptom clusters in newly diagnosed glioma patients: which symptom clusters are independently associated with functioning and global health status? Neuro Oncol. 21, 1447–1457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Boele, F. W. et al. Health-related quality of life of significant others of patients with malignant CNS versus non-CNS tumors: a comparative study. J. Neurooncol. 115, 87–94 (2013).

    Article  PubMed  Google Scholar 

  254. Li, Q. et al. Caregiver burden and influencing factors among family caregivers of patients with glioma: a cross-sectional survey. J. Clin. Neurosci. 96, 107–113 (2022).

    Article  PubMed  Google Scholar 

  255. Coomans, M. B. et al. Calculating the net clinical benefit in neuro-oncology clinical trials using two methods: quality-adjusted survival effect sizes and joint modeling. Neuro Oncol. Adv. 2, vdaa147 (2020).

    Article  Google Scholar 

  256. Dirven, L. et al. Working plan for the use of patient-reported outcome measures in adults with brain tumours: a Response Assessment in Neuro-Oncology (RANO) initiative. Lancet Oncol. 19, e173–e180 (2018).

    Article  PubMed  Google Scholar 

  257. Armstrong, T. S. et al. Glioma patient-reported outcome assessment in clinical care and research: a Response Assessment in Neuro-Oncology collaborative report. Lancet Oncol. 21, e97–e103 (2020).

    Article  PubMed  Google Scholar 

  258. Peeters, M. et al. Glioma patient-reported outcomes: patients and clinicians. BMJ Support. Palliat. Care 13, e205–e212 (2023).

    Article  PubMed  Google Scholar 

  259. Pe, M. et al. Setting international standards in analyzing patient-reported outcomes and quality of life endpoints in cancer clinical trials-innovative medicines initiative (SISAQOL-IMI): stakeholder views, objectives, and procedures. Lancet Oncol. 24, e270–e283 (2023).

    Article  PubMed  Google Scholar 

  260. Taphoorn, M. J. B. et al. Health-related quality of life in a randomized phase III study of bevacizumab, temozolomide, and radiotherapy in newly diagnosed glioblastoma. J. Clin. Oncol. 33, 2166–2175 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Wefel, J. S. et al. Neurocognitive, symptom, and health-related quality of life outcomes of a randomized trial of bevacizumab for newly diagnosed glioblastoma (NRG/RTOG 0825). Neuro Oncol. 23, 1125–1138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wolter, M., Felsberg, J., Malzkorn, B., Kaulich, K. & Reifenberger, G. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas. Acta Neuropathol. Commun. 10, 42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Euskirchen, P. et al. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing. Acta Neuropathol. 134, 691–703 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Patel, A. et al. Rapid-CNS2: rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study. Acta Neuropathol. 143, 609–612 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Hollon, T. et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat. Med. 29, 828–832 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Vermuelen, C. et al. Ultra-fast deep-learned CNS tumor classification during surgery. Nature 622, 842–849 (2023).

    Article  Google Scholar 

  267. Berzero, G., Pieri, V., Mortini, P., Filippi, M. & Finocchiaro, G. The coming of age of liquid biopsy in neuro-oncology. Brain 146, 4015–4024 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Fares, J. et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial. Lancet Oncol. 22, 1103–1114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Friedman, G. K. et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N. Engl. J. Med. 384, 1613–1622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Umemura, Y. et al. Combined cytotoxic and immune-stimulatory gene therapy for primary adult high-grade glioma: a phase 1, first-in-human trial. Lancet Oncol. 24, 1042–1052 (2023).

    Article  CAS  PubMed  Google Scholar 

  271. Nassiri, F. et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat. Med. 29, 1370–1378 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Ling, A. L. et al. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature 623, 157–166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Alexander, B. M. et al. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin. Cancer Res. 24, 737–743 (2018).

    Article  PubMed  Google Scholar 

  274. Rahman, R. et al. Inaugural results of the individualized screening trial of innovative glioblastoma therapy: a phase II platform trial for newly diagnosed glioblastoma using Bayesian adaptive randomization. J. Clin. Oncol. 41, 5524–5535 (2023).

    Article  CAS  PubMed  Google Scholar 

  275. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?term=NCT01089101 (2024).

  276. Nobre, L. et al. Outcomes of BRAF V600E pediatric gliomas treated with targeted BRAF inhibition. JCO Precis. Oncol. 4, PO.19.00298 (2020).

    PubMed  PubMed Central  Google Scholar 

  277. Lassaletta, A. et al. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J. Clin. Oncol. 35, 2934–2941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Lassman, A. B. et al. Infigratinib in patients with recurrent gliomas and FGFR alterations: a multicenter phase II study. Clin. Cancer Res. 28, 2270–2277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Stepien, N. et al. Feasibility and antitumour activity of the FGFR inhibitor erdafitnib in three paediatric CNS tumour patients. Pediatr. Blood Cancer 71, e30836 (2024).

    Article  PubMed  Google Scholar 

  280. Weller, M. et al. Glioma. Nat. Rev. Dis. Primers 1, 15017 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.W.); Epidemiology (M.W. and S.M.C.); Mechanisms/pathophysiology (M.W., G.R. and M.M.); Diagnosis, screening and prevention (M.W., M.L. and G.R.); Management (M.W., M.L. and P.Y.W.); Quality of life (M.W. and L.D.); Outlook (M.W.); overview of Primer (M.W.).

Corresponding author

Correspondence to Michael Weller.

Ethics declarations

Competing interests

M.W. has received research grants from Novartis, Quercis and Versameb, and honoraria for lectures or advisory board participation or consulting from Bayer, Curevac, Medac, Merck (EMD), Novartis, Novocure, Orbus, Philogen and Servier. P.Y.W. has received research grants from Amgen, Angiochem, AstraZeneca, Exelixis, Genentech/Roche, GlaxoSmithKline, Merck, Novartis, Sanofi–Aventis and Vascular Biogenics and honoraria for lectures or advisory board participation from AbbVie, Celldex, Foundation Medicine, Genentech/Roche, Merck, Novartis, Vascular Biogenics, Midatech and Monteris. M.L. has received research support from Arbor, Accuray and Biohaven and honoraria from VBI, InCephalo Therapeutics, Merck, Pyramid Bio, Insightec, Biohaven, Sanianoia, Hemispherian, Novocure, Noxxon, InCando, Hoth, CraniUs, MediFlix and GCAR. He is a shareholder for Egret Therapeutics. M.M. holds equity in MapLight Therapeutics and is on the SAB for TippingPoint Biosciences. G.R., S.M.C. and L.D. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks J. Barnholtz-Sloan; L. Liau, who co-reviewed with Y. Muftuoglu; Y. Muragaki, who co-reviewed with K. Tanaka; J. Nazarian; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, M., Wen, P.Y., Chang, S.M. et al. Glioma. Nat Rev Dis Primers 10, 33 (2024). https://doi.org/10.1038/s41572-024-00516-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00516-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer