Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics

Abstract

Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a ‘quantum advantage’ for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of classical (time-dependent density-matrix renormalization group and Ehrenfest) and quantum (trapped-ion) methods for simulating the model Hamiltonian from equation (5).
Fig. 2: Conical intersection model.
Fig. 3: Vibrationally assisted energy transfer model.
Fig. 4: Polarized-light-induced electron transfer model.

Similar content being viewed by others

References

  1. Park, J. W., Al-Saadon, R., MacLeod, M. K., Shiozaki, T. & Vlaisavljevich, B. Multireference electron correlation methods: journeys along potential energy surfaces. Chem. Rev. 120, 5878–5909 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Park, J. W. & Shiozaki, T. On-the-fly CASPT2 surface-hopping dynamics. J. Chem. Theory Comput. 13, 3676–3683 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Larsson, H. R., Zhai, H., Umrigar, C. J. & Chan, G. K.-L. The chromium dimer: closing a chapter of quantum chemistry. J. Am. Chem. Soc. 144, 15932–15937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).

    Article  CAS  Google Scholar 

  5. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).

    Article  Google Scholar 

  6. Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

    Article  Google Scholar 

  8. Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kassal, I., Jordan, S. P., Love, P. J., Mohseni, M. & Aspuru-Guzik, A. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl Acad. Sci. USA 105, 18681–18686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sawaya, N. P. D. et al. Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. npj Quantum Inf. 6, 49 (2020).

    Article  Google Scholar 

  11. Jahangiri, S., Arrazola, J. M., Quesada, N. & Delgado, A. Quantum algorithm for simulating molecular vibrational excitations. Phys. Chem. Chem. Phys. 22, 25528–25537 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. MacDonell, R. J. et al. Analog quantum simulation of chemical dynamics. Chem. Sci. 12, 9794–9805 (2021). This article suggests performing analog quantum simulation of chemical dynamics using quantum architectures consisting of qudits and bosonic oscillators, such as ion traps and circuit quantum electrodynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saha, D., Iyengar, S. S., Richerme, P., Smith, J. M. & Sabry, A. Mapping quantum chemical dynamics problems to spin-lattice simulators. J. Chem. Theory Comput. 17, 6713–6732 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at arXiv arxiv.org/abs/quant-ph/9511026 (1996).

  15. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Whitfield, J. D., Biamonte, J. & Aspuru-Guzik, A. Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109, 735–750 (2011).

    Article  CAS  Google Scholar 

  18. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. O’Malley, P. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  20. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

    Article  Google Scholar 

  22. Wang, L., Allodi, M. A. & Engel, G. S. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat. Rev. Chem. 3, 477–490 (2019).

    Article  Google Scholar 

  23. Cao, J. et al. Quantum biology revisited. Sci. Adv. 6, eaaz4888 (2020). This review discusses the possible presence and role of coherent oscillations in biological light harvesting that involve both electronic and vibrational degrees of freedom.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hammes-Schiffer, S. Proton-coupled electron transfer: moving together and charging forward. J. Am. Chem. Soc. 137, 8860–8871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).

    CAS  Google Scholar 

  28. Su, Y., Berry, D. W., Wiebe, N., Rubin, N. & Babbush, R. Fault-tolerant quantum simulations of chemistry in first quantization. PRX Quantum 2, 040332 (2021).

    Article  Google Scholar 

  29. Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).

    Article  CAS  Google Scholar 

  30. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).

    Article  CAS  Google Scholar 

  31. Hartmann, M. J. Quantum simulation with interacting photons. J. Opt. 18, 104005 (2016).

    Article  Google Scholar 

  32. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  CAS  Google Scholar 

  35. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  36. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article  CAS  Google Scholar 

  37. Brown, K. R., Kim, J. & Monroe, C. Co-designing a scalable quantum computer with trapped atomic ions. npj Quantum Inf. 2, 16034 (2016).

    Article  Google Scholar 

  38. Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article  Google Scholar 

  39. Kienzler, D. et al. Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Um, M. et al. Phonon arithmetic in a trapped ion system. Nat. Commun. 7, 11410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, J. et al. NOON states of nine quantized vibrations in two radial modes of a trapped ion. Phys. Rev. Lett. 121, 160502 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article  PubMed  Google Scholar 

  43. de Neeve, B., Nguyen, T.-L., Behrle, T. & Home, J. P. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys. 18, 296–300 (2022).

    Article  Google Scholar 

  44. Jia, Z. et al. Determination of multimode motional quantum states in a trapped ion system. Phys. Rev. Lett. 129, 103602 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Gorman, D. J. et al. Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator. Phys. Rev. X 8, 011038 (2018). This paper demonstrates the first analog trapped-ion simulation of a linear vibronic coupling model consisting of two electronic states and a single vibrational mode.

    CAS  Google Scholar 

  46. Friesner, R. A. & Silbey, R. Linear vibronic coupling in a general two level system. J. Chem. Phys. 75, 3925–3936 (1981).

    Article  CAS  Google Scholar 

  47. Caldeira, A. O. & Leggett, A. J. Quantum tunnelling in a dissipative system. Ann. Phys. 149, 374–456 (1983).

    Article  Google Scholar 

  48. Garg, A., Onuchic, J. N. & Ambegaokar, V. Effect of friction on electron transfer in biomolecules. J. Chem. Phys. 83, 4491–4503 (1985). This article provides a quantum mechanical model for electron transfer in which the electronic states are coupled to a nuclear reaction coordinate that is subject to friction from other nuclear and/or solvent coordinates.

    Article  CAS  Google Scholar 

  49. Lode, A. U., Lévêque, C., Madsen, L. B., Streltsov, A. I. & Alon, O. E. Colloquium: multiconfigurational time-dependent Hartree approaches for indistinguishable particles. Rev. Mod. Phys. 92, 011001 (2020).

    Article  Google Scholar 

  50. Wang, H. & Thoss, M. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119, 1289–1299 (2003).

    Article  CAS  Google Scholar 

  51. Meyer, H.-D., Gatti, F. & Worth, G. A. Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley, 2009).

  52. Ben-Nun, M., Quenneville, J. & Martínez, T. J. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161–5175 (2000).

    Article  CAS  Google Scholar 

  53. Martínez, T. J. Insights for light-driven molecular devices from ab initio multiple spawning excited-state dynamics of organic and biological chromophores. Acc. Chem. Res. 39, 119–126 (2006).

    Article  PubMed  Google Scholar 

  54. Curchod, B. F., Glover, W. J. & Martínez, T. J. SSAIMS–stochastic-selection ab initio multiple spawning for efficient nonadiabatic molecular dynamics. J. Phys. Chem. A 124, 6133–6143 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Tanimura, Y. Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A 41, 6676 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Jin, J., Zheng, X. & Yan, Y. Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J. Chem. Phys. 128, 234703 (2008).

    Article  PubMed  Google Scholar 

  57. Yan, Y., Xing, T. & Shi, Q. A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J. Chem. Phys. 153, 204109 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Kundu, S. & Makri, N. Intramolecular vibrations in excitation energy transfer: insights from real-time path integral calculations. Annu. Rev. Phys. Chem. 73, 349–375 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Makri, N. Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework. Chem. Phys. Lett. 193, 435–445 (1992).

    Article  CAS  Google Scholar 

  60. Makri, N. Small matrix disentanglement of the path integral: overcoming the exponential tensor scaling with memory length. J. Chem. Phys. 152, 041104 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Makri, N. Small matrix path integral for system-bath dynamics. J. Chem. Theory Comput. 16, 4038–4049 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Makri, N. Small matrix path integral with extended memory. J. Chem. Theory Comput. 17, 1–6 (2020).

    Article  PubMed  Google Scholar 

  63. Makri, N. Small matrix path integral for driven dissipative dynamics. J. Phys. Chem. A 125, 10500–10506 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Topaler, M. & Makri, N. Quasi-adiabatic propagator path integral methods. Exact quantum rate constants for condensed phase reactions. Chem. Phys. Lett. 210, 285–293 (1993).

    Article  CAS  Google Scholar 

  65. Strathearn, A., Kirton, P., Kilda, D., Keeling, J. & Lovett, B. W. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat. Commun. 9, 3322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cygorek, M. et al. Simulation of open quantum systems by automated compression of arbitrary environments. Nat. Phys. 18, 662–668 (2022).

    Article  CAS  Google Scholar 

  67. Link, V., Tu, H.-H. & Strunz, W. T. Open quantum system dynamics from infinite tensor network contraction. Preprint at arXiv arxiv.org/abs/2307.01802 (2023).

  68. Somoza, A. D., Marty, O., Lim, J., Huelga, S. F. & Plenio, M. B. Dissipation-assisted matrix product factorization. Phys. Rev. Lett. 123, 100502 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Somoza, A. D., Lorenzoni, N., Lim, J., Huelga, S. F. & Plenio, M. B. Driving force and nonequilibrium vibronic dynamics in charge separation of strongly bound electron–hole pairs. Commun. Phys. 6, 65 (2023).

    Article  CAS  Google Scholar 

  70. White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004). This article introduces the time-dependent density matrix renormalization group method, which can efficiently simulate the dynamics of one-dimensional quantum systems.

    Article  PubMed  Google Scholar 

  71. Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. Theory Exp. 2004, P04005 (2004).

    Article  Google Scholar 

  72. Chin, A. W., Rivas, Á., Huelga, S. F. & Plenio, M. B. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J. Math. Phys. 51, 092109 (2010).

    Article  Google Scholar 

  73. Prior, J., Chin, A. W., Huelga, S. F. & Plenio, M. B. Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 050404 (2010). This article provides an efficient method for simulating systems consisting of two electronic sites, each coupled to a bath of many harmonic oscillators, by transforming the entire Hamiltonian into a one-dimensional chain.

    Article  PubMed  Google Scholar 

  74. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  Google Scholar 

  75. Chin, A. W., Huelga, S. F. & Plenio, M. B. in Semiconductors and Semimetals, Vol. 85 (eds Wüerfel, U. et al.) Ch. 4 (Elsevier, 2011).

  76. Del Pino, J., Schröder, F. A., Chin, A. W., Feist, J. & Garcia-Vidal, F. J. Tensor network simulation of polaron-polaritons in organic microcavities. Phys. Rev. B 98, 165416 (2018).

    Article  Google Scholar 

  77. Dunnett, A. J. & Chin, A. W. Efficient bond-adaptive approach for finite-temperature open quantum dynamics using the one-site time-dependent variational principle for matrix product states. Phys. Rev. B 104, 214302 (2021).

    Article  CAS  Google Scholar 

  78. Nuomin, H., Beratan, D. N. & Zhang, P. Improving the efficiency of open-quantum-system simulations using matrix product states in the interaction picture. Phys. Rev. A 105, 032406 (2022). This article describes the density-matrix renormalization group algorithm used in the current paper and gives an overview of the widely used chain-mapping technique in tDMRG simulations of open quantum systems.

    Article  Google Scholar 

  79. Xie, X. et al. Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems. J. Chem. Phys. 151, 224101 (2019).

    Article  PubMed  Google Scholar 

  80. Nuomin, H., Song, F.-F., Beratan, D. N. & Zhang, P. Suppressing the entanglement growth in matrix product state evolution of quantum systems through nonunitary similarity transformations. Phys. Rev. B 106, 104306 (2022).

    Article  Google Scholar 

  81. Xu, Y., Xie, Z., Xie, X., Schollwöck, U. & Ma, H. Stochastic adaptive single-site time-dependent variational principle. JACS Au 2, 335–340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller, J. R., Calcaterra, L. & Closs, G. Intramolecular long-distance electron transfer in radical anions. the effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984).

    Article  CAS  Google Scholar 

  83. Miller, J. R., Beitz, J. V. & Huddleston, R. K. Effect of free energy on rates of electron transfer between molecules. J. Am. Chem. Soc. 106, 5057–5068 (1984).

    Article  CAS  Google Scholar 

  84. Shibano, Y. et al. Large reorganization energy of pyrrolidine-substituted perylenediimide in electron transfer. J. Phys. Chem. C 111, 6133–6142 (2007).

    Article  CAS  Google Scholar 

  85. Onuchic, J. N. Effect of friction on electron transfer: the two reaction coordinate case. J. Chem. Phys. 86, 3925–3943 (1987).

    Article  CAS  Google Scholar 

  86. Hsu, C.-P. Reorganization energies and spectral densities for electron transfer problems in charge transport materials. Phys. Chem. Chem. Phys. 22, 21630–21641 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Polyakov, E. A. Real-time motion of open quantum systems: structure of entanglement, renormalization group, and trajectories. Phys. Rev. B 105, 054306 (2022).

    Article  CAS  Google Scholar 

  88. Mignolet, B. & Curchod, B. F. A walk through the approximations of ab initio multiple spawning. J. Chem. Phys. 148, 134110 (2018).

  89. Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik [in German]. Z. Phys. 45, 455–457 (1927).

    Article  Google Scholar 

  90. McLachlan, A. A variational solution of the time-dependent Schrodinger equation. Mol. Phys. 8, 39–44 (1964).

    Article  Google Scholar 

  91. Agostini, F. & Curchod, B. F. Different flavors of nonadiabatic molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 9, e1417 (2019). This review covers trajectory-based quantum-classical methods for solving general nonadiabatic dynamics; the connection of the Ehrenfest method to other more advanced quantum-classical methods is discussed.

    Article  Google Scholar 

  92. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  CAS  Google Scholar 

  93. Wang, L., Akimov, A. & Prezhdo, O. V. Recent progress in surface hopping: 2011–2015. J. Phys. Chem. Lett. 7, 2100–2112 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Barbatti, M. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 620–633 (2011).

    Article  CAS  Google Scholar 

  95. Subotnik, J. E. et al. Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 67, 387–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, L., Sifain, A. E. & Prezhdo, O. V. Fewest switches surface hopping in Liouville space. J. Phys. Chem. Lett. 6, 3827–3833 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Kapral, R. & Ciccotti, G. Mixed quantum-classical dynamics. J. Chem. Phys. 110, 8919–8929 (1999).

    Article  CAS  Google Scholar 

  98. Mac Kernan, D., Ciccotti, G. & Kapral, R. Trotter-based simulation of quantum-classical dynamics. J. Phys. Chem. B 112, 424–432 (2008).

    Article  PubMed  Google Scholar 

  99. Kim, H., Nassimi, A. & Kapral, R. Quantum-classical Liouville dynamics in the mapping basis. J. Chem. Phys. 129, 084102 (2008).

    Article  PubMed  Google Scholar 

  100. Hsieh, C.-Y. & Kapral, R. Nonadiabatic dynamics in open quantum-classical systems: forward-backward trajectory solution. J. Chem. Phys. 137, 22A507 (2012).

    Article  PubMed  Google Scholar 

  101. Hsieh, C.-Y. & Kapral, R. Analysis of the forward-backward trajectory solution for the mixed quantum-classical Liouville equation. J. Chem. Phys. 138, 134110 (2013).

    Article  PubMed  Google Scholar 

  102. Kapral, R. Quantum dynamics in open quantum-classical systems. J. Phys. Condens. Matter 27, 073201 (2015).

    Article  PubMed  Google Scholar 

  103. Miller, W. H. The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105, 2942–2955 (2001).

    Article  CAS  Google Scholar 

  104. Miller, W. H. Electronically nonadiabatic dynamics via semiclassical initial value methods. J. Phys. Chem. A 113, 1405–1415 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Sun, X., Wang, H. & Miller, W. H. Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation. J. Chem. Phys. 109, 7064–7074 (1998).

    Article  CAS  Google Scholar 

  106. Shi, Q. & Geva, E. A relationship between semiclassical and centroid correlation functions. J. Chem. Phys. 118, 8173–8184 (2003).

    Article  CAS  Google Scholar 

  107. Bossion, D., Ying, W., Chowdhury, S. N. & Huo, P. Non-adiabatic mapping dynamics in the phase space of the SU(N) Lie group. J. Chem. Phys. 157, 084105 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Runeson, J. E., Mannouch, J. R., Amati, G., Fiechter, M. R. & Richardson, J. Spin-mapping methods for simulating ultrafast nonadiabatic dynamics. Chimia 76, 582–588 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Runeson, J. E. & Richardson, J. O. Generalized spin mapping for quantum-classical dynamics. J. Chem. Phys. 152, 084110 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Mannouch, J. R. & Richardson, J. O. A partially linearized spin-mapping approach for simulating nonlinear optical spectra. J. Chem. Phys. 156, 024108 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Cao, J. & Voth, G. A. The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties. J. Chem. Phys. 100, 5106–5117 (1994).

    Article  CAS  Google Scholar 

  112. Jang, S. & Voth, G. A. A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables. J. Chem. Phys. 111, 2371–2384 (1999).

    Article  CAS  Google Scholar 

  113. Habershon, S., Manolopoulos, D. E., Markland, T. E. & Miller III, T. F. Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annu. Rev. Phys. Chem. 64, 387–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Craig, I. R. & Manolopoulos, D. E. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys. 121, 3368–3373 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Richardson, J. O. & Thoss, M. Communication: nonadiabatic ring-polymer molecular dynamics. J. Chem. Phys. 139, 031102 (2013).

    Article  PubMed  Google Scholar 

  116. Ananth, N. Mapping variable ring polymer molecular dynamics: a path-integral based method for nonadiabatic processes. J. Chem. Phys. 139, 124102 (2013).

    Article  PubMed  Google Scholar 

  117. Chowdhury, S. N. & Huo, P. Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations. J. Chem. Phys. 147, 214109 (2017).

    Article  PubMed  Google Scholar 

  118. Chowdhury, S. N. & Huo, P. State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics. J. Chem. Phys. 150, 244102 (2019).

    Article  PubMed  Google Scholar 

  119. Chowdhury, S. N. & Huo, P. Non-adiabatic Matsubara dynamics and non-adiabatic ring-polymer molecular dynamics. J. Chem. Phys. 154, 124124 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Hele, T. J., Willatt, M. J., Muolo, A. & Althorpe, S. C. Boltzmann-conserving classical dynamics in quantum time-correlation functions: “Matsubara dynamics”. J. Chem. Phys. 142, 134103 (2015).

    Article  PubMed  Google Scholar 

  121. Tully, J. C. in Modern Methods for Multidimensional Dynamics Computations in Chemistry (ed. Thompson, D. L.) 34–72 (World Scientific, 1998).

  122. Parandekar, P. V. & Tully, J. C. Mixed quantum-classical equilibrium. J. Chem. Phys. 122, 094102 (2005).

    Article  PubMed  Google Scholar 

  123. Kang, J. & Wang, L.-W. Nonadiabatic molecular dynamics with decoherence and detailed balance under a density matrix ensemble formalism. Phys. Rev. B 99, 224303 (2019).

    Article  CAS  Google Scholar 

  124. Jain, A. & Subotnik, J. E. Vibrational energy relaxation: a benchmark for mixed quantum–classical methods. J. Phys. Chem. A 122, 16–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Persico, M. & Granucci, G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 133, 1526 (2014).

    Article  Google Scholar 

  126. Ananth, N. Path integrals for nonadiabatic dynamics: multistate ring polymer molecular dynamics. Annu. Rev. Phys. Chem. 73, 299–322 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, Z., Xu, W., Tuckerman, M. E. & Sun, X. Imaginary-time open-chain path-integral approach for two-state time correlation functions and applications in charge transfer. J. Chem. Phys. 157, 114111 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Bellonzi, N., Jain, A. & Subotnik, J. E. An assessment of mean-field mixed semiclassical approaches: equilibrium populations and algorithm stability. J. Chem. Phys. 144, 154110 (2016).

    Article  PubMed  Google Scholar 

  129. Low, P. J., White, B. M., Cox, A. A., Day, M. L. & Senko, C. Practical trapped-ion protocols for universal qudit-based quantum computing. Phys. Rev. Res. 2, 033128 (2020).

    Article  CAS  Google Scholar 

  130. Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 1053–1057 (2022).

    Article  CAS  Google Scholar 

  131. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Davoudi, Z., Linke, N. M. & Pagano, G. Toward simulating quantum field theories with controlled phonon-ion dynamics: a hybrid analog-digital approach. Phys. Rev. Res. 3, 043072 (2021).

    Article  CAS  Google Scholar 

  133. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Maier, C. et al. Environment-assisted quantum transport in a 10-qubit network. Phys. Rev. Lett. 122, 050501 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, B.-X. et al. Efficient quantum simulation of photosynthetic light harvesting. npj Quantum Inf. 4, 52 (2018).

    Article  Google Scholar 

  136. Sun, K. et al. Quantum simulation of polarized light-induced electron transfer with a trapped-ion qutrit system. J. Phys. Chem. Lett. 14, 6071–6077 (2023). This article demonstrates analog quantum simulation of an electron-transfer model in which the transfer rate depends on the polarization of the light that excites the donor molecule, using a trapped-ion qutrit system.

    Article  CAS  PubMed  Google Scholar 

  137. Lechner, R. et al. Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A 93, 053401 (2016).

    Article  Google Scholar 

  138. Feng, L. et al. Efficient ground-state cooling of large trapped-ion chains with an electromagnetically-induced-transparency tripod scheme. Phys. Rev. Lett. 125, 053001 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259 (1998). This article introduces the methods for trapping ions and manipulating their atomic and motional states; it also discusses various decoherence mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  141. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

    Article  CAS  Google Scholar 

  142. Lidar, D. A., Bihary, Z. & Whaley, K. B. From completely positive maps to the quantum Markovian semigroup master equation. Chem. Phys. 268, 35–53 (2001).

    Article  CAS  Google Scholar 

  143. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999).

    Article  Google Scholar 

  144. Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999).

    Article  Google Scholar 

  145. Zhang, J.-N. et al. Probabilistic eigensolver with a trapped-ion quantum processor. Phys. Rev. A 101, 052333 (2020).

    Article  CAS  Google Scholar 

  146. Christensen, J. E., Hucul, D., Campbell, W. C. & Hudson, E. R. High-fidelity manipulation of a qubit enabled by a manufactured nucleus. npj Quantum Inf. 6, 35 (2020).

    Article  Google Scholar 

  147. Ransford, A., Roman, C., Dellaert, T., McMillin, P. & Campbell, W. C. Weak dissipation for high-fidelity qubit-state preparation and measurement. Phys. Rev. A 104, L060402 (2021).

    Article  CAS  Google Scholar 

  148. Paris, M. & Řeháček, J. (eds) Quantum State Estimation (Springer, 2004).

  149. Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2010).

    Article  PubMed  Google Scholar 

  150. Sato, S. A., Kelly, A. & Rubio, A. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics. Phys. Rev. B 97, 134308 (2018).

    Article  Google Scholar 

  151. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Nitzan, A. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems (Oxford Univ. Press, 2006).

  153. Zhu, S.-L., Monroe, C. & Duan, L.-M. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

    Article  PubMed  Google Scholar 

  154. Leung, P. H. et al. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett. 120, 020501 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Kang, M. et al. Batch optimization of frequency-modulated pulses for robust two-qubit gates in ion chains. Phys. Rev. Appl. 16, 024039 (2021).

    Article  CAS  Google Scholar 

  156. Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125, 150505 (2020). This paper introduces the trapped-ion system from which the parameters in Table 1 are taken; it also describes the method for simulating the effects of noise, which provides reliable predictions of the system performance.

    Article  CAS  PubMed  Google Scholar 

  157. Kang, M. et al. Designing filter functions of frequency-modulated pulses for high-fidelity two-qubit gates in ion chains. Phys. Rev. Appl. 19, 014014 (2023).

    Article  CAS  Google Scholar 

  158. Cetina, M. et al. Control of transverse motion for quantum gates on individually addressed atomic qubits. PRX Quantum 3, 010334 (2022).

    Article  Google Scholar 

  159. Johansson, J. R., Nation, P. D. & Nori, F. Qutip: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012).

    Article  CAS  Google Scholar 

  160. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

    Article  Google Scholar 

  161. Kang, M., Liang, Q., Li, M. & Nam, Y. Efficient motional-mode characterization for high-fidelity trapped-ion quantum computing. Quantum Sci. Technol. 8, 024002 (2023).

    Article  Google Scholar 

  162. Zhang, C., Jeckelmann, E. & White, S. R. Density matrix approach to local Hilbert space reduction. Phys. Rev. Lett. 80, 2661–2664 (1998).

    Article  CAS  Google Scholar 

  163. Mascherpa, F. et al. Optimized auxiliary oscillators for the simulation of general open quantum systems. Phys. Rev. A 101, 052108 (2020). This paper and Somoza, A. D. et al. (2019) demonstrate state-of-the-art classical-digital simulations of a homogeneous polymer consisting of several electronic states, each coupled to its nearest-neighbour electronic states and a few dissipative bath modes.

    Article  CAS  Google Scholar 

  164. Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    Article  Google Scholar 

  165. Chen, J.-S. et al. Benchmarking a trapped-ion quantum computer with 29 algorithmic qubits. Preprint at arXiv arxiv.org/abs/2308.05071 (2023).

  166. Jarlaud, V., Hrmo, P., Joshi, M. K. & Thompson, R. C. Coherence properties of highly-excited motional states of a trapped ion. J. Phys. B. 54, 015501 (2021).

    Article  Google Scholar 

  167. Pagano, G. et al. Cryogenic trapped-ion system for large scale quantum simulation. Quantum Sci. Technol. 4, 014004 (2018).

    Article  Google Scholar 

  168. Spivey, R. F. et al. High-stability cryogenic system for quantum computing with compact packaged ion traps. IEEE Trans. Quantum Eng. 3, 1–11 (2022).

    Article  Google Scholar 

  169. Spivey III, R. F. A Compact Cryogenic Package Approach to Ion Trap Quantum Computing. PhD thesis, Duke Univ (2022).

  170. Brown, K. R., Chiaverini, J., Sage, J. M. & Häffner, H. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater. 6, 892–905 (2021).

    Article  CAS  Google Scholar 

  171. Zhang, B. Improving Circuit Performance in a Trapped-ion Quantum Computer. PhD thesis, Duke Univ (2021).

  172. Parrado-Rodríguez, P., Ryan-Anderson, C., Bermudez, A. & Müller, M. Crosstalk suppression for fault-tolerant quantum error correction with trapped ions. Quantum 5, 487 (2021).

    Article  Google Scholar 

  173. Fang, C., Wang, Y., Huang, S., Brown, K. R. & Kim, J. Crosstalk suppression in individually addressed two-qubit gates in a trapped-ion quantum computer. Phys. Rev. Lett. 129, 240504 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Moore, I. D. et al. Photon scattering errors during stimulated Raman transitions in trapped-ion qubits. Phys. Rev. A 107, 032413 (2023).

    Article  CAS  Google Scholar 

  175. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Barbatti, M. et al. Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proc. Natl Acad. Sci. USA 107, 21453–21458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Matsika, S. Three-state conical intersections in nucleic acid bases. J. Phys. Chem. A 109, 7538–7545 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Larson, J., Sjöqvist, E. & Öhberg, P. Conical Intersections in Physics (Springer, 2020).

  179. Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985 (1996).

    Article  CAS  Google Scholar 

  180. Baer, M. Beyond Born–Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections (Wiley, 2006).

  181. Ryabinkin, I. G., Joubert-Doriol, L. & Izmaylov, A. F. Geometric phase effects in nonadiabatic dynamics near conical intersections. Acc. Chem. Res. 50, 1785–1793 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Joubert-Doriol, L., Ryabinkin, I. G. & Izmaylov, A. F. Geometric phase effects in low-energy dynamics near conical intersections: a study of the multidimensional linear vibronic coupling model. J. Chem. Phys. 139, 234103 (2013).

    Article  PubMed  Google Scholar 

  183. Li, J., Joubert-Doriol, L. & Izmaylov, A. F. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study. J. Chem. Phys. 147, 064106 (2017).

    Article  PubMed  Google Scholar 

  184. Kendrick, B., Hazra, J. & Balakrishnan, N. The geometric phase controls ultracold chemistry. Nat. Commun. 6, 7918 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Yuan, D. et al. Observation of the geometric phase effect in the H + HD → H2 + D reaction. Science 362, 1289–1293 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Lin, S.-H. & Bersohn, R. Effect of partial deuteration and temperature on triplet-state lifetimes. J. Chem. Phys. 48, 2732–2736 (1968).

    Article  CAS  Google Scholar 

  187. Gambetta, F. M., Zhang, C., Hennrich, M., Lesanovsky, I. & Li, W. Exploring the many-body dynamics near a conical intersection with trapped Rydberg ions. Phys. Rev. Lett. 126, 233404 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Whitlow, J. et al. Quantum simulation of conical intersections using trapped ions. Nat. Chem. 15, 1509–1514 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Valahu, C. H. et al. Direct observation of geometric-phase interference in dynamics around a conical intersection. Nat. Chem. 15, 1503–1508 (2023). This paper and Whitlow, J. et al. (2023) demonstrate analog trapped-ion simulation of a conical intersection in which quantum interference between pathways in the space of two reaction coordinates is observed.

    Article  CAS  PubMed  Google Scholar 

  190. Wang, C. S. et al. Observation of wave-packet branching through an engineered conical intersection. Phys. Rev. X 13, 011008 (2023).

    CAS  Google Scholar 

  191. Huelga, S. F. & Plenio, M. B. Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013).

    Article  CAS  Google Scholar 

  192. Adolphs, J. & Renger, T. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 91, 2778–2797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013).

    Article  CAS  Google Scholar 

  194. Irish, E., Gómez-Bombarelli, R. & Lovett, B. Vibration-assisted resonance in photosynthetic excitation-energy transfer. Phys. Rev. A 90, 012510 (2014).

    Article  Google Scholar 

  195. Nalbach, P., Mujica-Martinez, C. & Thorwart, M. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex. Phys. Rev. E 91, 022706 (2015).

    Article  CAS  Google Scholar 

  196. Fujihashi, Y., Fleming, G. R. & Ishizaki, A. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra. J. Chem. Phys. 142, 212403 (2015).

    Article  PubMed  Google Scholar 

  197. Engel, G. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mancal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Duan, H.-G. et al. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl Acad. Sci. USA 114, 8493–8498 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Womick, J. M. & Moran, A. M. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115, 1347–1356 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014). This article reports the observation of coherent oscillations involving electronic and vibrational degrees of freedom in the photosystem II reaction centre.

    Article  CAS  PubMed  Google Scholar 

  202. Plenio, M. B., Almeida, J. & Huelga, S. F. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139, 235102 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Killoran, N., Huelga, S. F. & Plenio, M. B. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture. J. Chem. Phys. 143, 155102 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Li, Z.-Z., Ko, L., Yang, Z., Sarovar, M. & Whaley, K. B. Unraveling excitation energy transfer assisted by collective behaviors of vibrations. New J. Phys. 23, 073012 (2021).

    Article  Google Scholar 

  206. Fassioli, F., Nazir, A. & Olaya-Castro, A. Quantum state tuning of energy transfer in a correlated environment. J. Phys. Chem. Lett. 1, 2139–2143 (2010).

    Article  CAS  Google Scholar 

  207. Sarovar, M., Cheng, Y.-C. & Whaley, K. B. Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. Phys. Rev. E 83, 011906 (2011).

    Article  Google Scholar 

  208. Uchiyama, C., Munro, W. J. & Nemoto, K. Environmental engineering for quantum energy transport. npj Quantum Inf. 4, 33 (2018).

    Article  Google Scholar 

  209. MacDonell, R. J. et al. Predicting molecular vibronic spectra using time-domain analog quantum simulation. Chem. Sci. 14, 9439–9451 (2023). This article demonstrates an analog trapped-ion simulation that accurately generates the vibronic spectrum of a single harmonic-mode model of the SO2 molecule.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shen, Y. et al. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device. Chem. Sci. 9, 836–840 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

    Article  Google Scholar 

  212. Potočnik, A. et al. Studying light-harvesting models with superconducting circuits. Nat. Commun. 9, 904 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Berkelbach, T. C., Markland, T. E. & Reichman, D. R. Reduced density matrix hybrid approach: application to electronic energy transfer. J. Chem. Phys. 136, 084104 (2012).

    Article  PubMed  Google Scholar 

  214. Montoya-Castillo, A., Berkelbach, T. C. & Reichman, D. R. Extending the applicability of Redfield theories into highly non-Markovian regimes. J. Chem. Phys. 143, 194108 (2015).

    Article  PubMed  Google Scholar 

  215. Li, Z.-Z., Ko, L., Yang, Z., Sarovar, M. & Whaley, K. B. Interplay of vibration-and environment-assisted energy transfer. New J. Phys. 24, 033032 (2022).

    Article  Google Scholar 

  216. Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964).

    Article  CAS  Google Scholar 

  217. Beratan, D. N. Why are DNA and protein electron transfer so different? Annu. Rev. Phys. Chem. 70, 71–97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Prytkova, T. R., Kurnikov, I. V. & Beratan, D. N. Coupling coherence distinguishes structure sensitivity in protein electron transfer. Science 315, 622–625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Skourtis, S. S., Waldeck, D. H. & Beratan, D. N. Inelastic electron tunneling erases coupling-pathway interferences. J. Phys. Chem. B 108, 15511–15518 (2004).

    Article  CAS  Google Scholar 

  220. Goldsmith, R. H., Wasielewski, M. R. & Ratner, M. A. Electron transfer in multiply bridged donor–acceptor molecules: dephasing and quantum coherence. J. Phys. Chem. B 110, 20258–20262 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Zarea, M., Powell, D., Renaud, N., Wasielewski, M. R. & Ratner, M. A. Decoherence and quantum interference in a four-site model system: mechanisms and turnovers. J. Phys. Chem. B 117, 1010–1020 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Skourtis, S. S., Beratan, D. N., Naaman, R., Nitzan, A. & Waldeck, D. H. Chiral control of electron transmission through molecules. Phys. Rev. Lett. 101, 238103 (2008).

    Article  PubMed  Google Scholar 

  223. Xiao, D., Skourtis, S. S., Rubtsov, I. V. & Beratan, D. N. Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Lett. 9, 1818–1823 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Lin, Z. et al. Modulating unimolecular charge transfer by exciting bridge vibrations. J. Am. Chem. Soc. 131, 18060–18062 (2009). This article demonstrates that the donor–acceptor charge transfer can be modulated through the infrared excitation of bridging vibrational modes, revealing the subtle interplay between electronic and vibrational dynamics.

    Article  CAS  PubMed  Google Scholar 

  225. Evenson, J. W. & Karplus, M. Effective coupling in bridged electron transfer molecules: computational formulation and examples. J. Chem. Phys. 96, 5272–5278 (1992).

    Article  CAS  Google Scholar 

  226. Skourtis, S. S., Beratan, D. N. & Onuchic, J. N. The two-state reduction for electron and hole transfer in bridge-mediated electron-transfer reactions. Chem. Phys. 176, 501–520 (1993).

    Article  CAS  Google Scholar 

  227. Troisi, A., Nitzan, A. & Ratner, M. A. A rate constant expression for charge transfer through fluctuating bridges. J. Chem. Phys. 119, 5782–5788 (2003).

    Article  CAS  Google Scholar 

  228. Sun, X. & Geva, E. Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi’s golden rule rate constants. J. Chem. Phys. 144, 044106 (2016).

    Article  PubMed  Google Scholar 

  229. Lemmer, A. et al. A trapped-ion simulator for spin-boson models with structured environments. New J. Phys. 20, 073002 (2018). This paper suggests using laser cooling of the motional mode of trapped ions to simulate the dissipation of a vibrational mode, which effectively simulates a bath with Lorentzian spectral density.

    Article  Google Scholar 

  230. Tamascelli, D., Smirne, A., Huelga, S. F. & Plenio, M. B. Nonperturbative treatment of non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 120, 030402 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Onuchic, J. N., Beratan, D. N. & Hopfield, J. Some aspects of electron-transfer reaction dynamics. J. Phys. Chem. 90, 3707–3721 (1986).

    Article  CAS  Google Scholar 

  232. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211 (1981).

    Article  Google Scholar 

  233. Leggett, A. Quantum tunneling in the presence of an arbitrary linear dissipation mechanism. Phys. Rev. B 30, 1208 (1984).

    Article  Google Scholar 

  234. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987).

    Article  CAS  Google Scholar 

  235. Schlawin, F., Gessner, M., Buchleitner, A., Schätz, T. & Skourtis, S. S. Continuously parametrized quantum simulation of molecular electron-transfer reactions. PRX Quantum 2, 010314 (2021).

    Article  Google Scholar 

  236. Tanimura, Y. Numerically “exact” approach to open quantum dynamics: the hierarchical equations of motion (HEOM). J. Chem. Phys. 153, 020901 (2020).

    Article  CAS  PubMed  Google Scholar 

  237. Zhao, Y., Sun, K., Chen, L. & Gelin, M. The hierarchy of Davydov’s Ansätze and its applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1589 (2022).

    Article  Google Scholar 

  238. Ye, L. et al. HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 608–638 (2016).

    Article  Google Scholar 

  239. Gelin, M. F., Chen, L. & Domcke, W. Equation-of-motion methods for the calculation of femtosecond time-resolved 4-wave-mixing and N-wave-mixing signals. Chem. Rev. 122, 17339–17396 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Ren, J., Li, W., Jiang, T., Wang, Y. & Shuai, Z. Time-dependent density matrix renormalization group method for quantum dynamics in complex systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. e1614 (2022).

  241. Weimer, H., Kshetrimayum, A. & Orús, R. Simulation methods for open quantum many-body systems. Rev. Mod. Phys. 93, 015008 (2021).

    Article  Google Scholar 

  242. De Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).

    Article  Google Scholar 

  243. Thoss, M. & Wang, H. Semiclassical description of molecular dynamics based on initial-value representation methods. Annu. Rev. Phys. Chem. 55, 299 (2004).

    Article  CAS  PubMed  Google Scholar 

  244. Lee, M. K., Huo, P. & Coker, D. F. Semiclassical path integral dynamics: photosynthetic energy transfer with realistic environment interactions. Annu. Rev. Phys. Chem. 67, 639–668 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Mac Kernan, D., Ciccotti, G. & Kapral, R. Surface-hopping dynamics of a spin-boson system. J. Chem. Phys. 116, 2346–2353 (2002).

    Article  Google Scholar 

  246. Makri, N. Feynman path integration in quantum dynamics. Comput. Phys. Commun. 63, 389–414 (1991).

    Article  CAS  Google Scholar 

  247. Feynman, R. & Vernon, F. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963).

    Article  Google Scholar 

  248. Shi, Q. & Geva, E. A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism. J. Chem. Phys. 121, 3393–3404 (2004).

    Article  CAS  PubMed  Google Scholar 

  249. May, V. & Kühn, O. Charge and Energy Transfer Dynamics in Molecular Systems 3rd edn (Wiley, 2011).

  250. Feynman, R. P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948).

    Article  Google Scholar 

  251. Zobel, J. P., Heindl, M., Plasser, F., Mai, S. & González, L. Surface hopping dynamics on vibronic coupling models. Acc. Chem. Res. 54, 3760–3771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Harrington, P. M., Mueller, E. J. & Murch, K. W. Engineered dissipation for quantum information science. Nat. Rev. Phys. 4, 660–671 (2022).

    Article  Google Scholar 

  253. Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995).

    Article  CAS  PubMed  Google Scholar 

  254. Larson, D., Bergquist, J. C., Bollinger, J. J., Itano, W. M. & Wineland, D. J. Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70 (1986).

    Article  CAS  PubMed  Google Scholar 

  255. Blinov, B. et al. Sympathetic cooling of trapped Cd+ isotopes. Phys. Rev. A 65, 040304 (2002).

    Article  Google Scholar 

  256. Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003).

    Article  Google Scholar 

  257. Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    Article  CAS  PubMed  Google Scholar 

  258. Clark, C. R., Goeders, J. E., Dodia, Y. K., Viteri, C. R. & Brown, K. R. Detection of single-ion spectra by Coulomb-crystal heating. Phys. Rev. A 81, 043428 (2010).

    Article  Google Scholar 

  259. Cai, Z. & Barthel, T. Algebraic versus exponential decoherence in dissipative many-particle systems. Phys. Rev. Lett. 111, 150403 (2013).

    Article  PubMed  Google Scholar 

  260. Chenu, A., Beau, M., Cao, J. & del Campo, A. Quantum simulation of generic many-body open system dynamics using classical noise. Phys. Rev. Lett. 118, 140403 (2017).

    Article  CAS  PubMed  Google Scholar 

  261. Marshall, K. & James, D. F. Linear mode-mixing of phonons with trapped ions. Appl. Phys. B 123, 26 (2017).

    Article  Google Scholar 

  262. Gan, H., Maslennikov, G., Tseng, K.-W., Nguyen, C. & Matsukevich, D. Hybrid quantum computing with conditional beam splitter gate in trapped ion system. Phys. Rev. Lett. 124, 170502 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. Chen, W., Gan, J., Zhang, J.-N., Matuskevich, D. & Kim, K. Quantum computation and simulation with vibrational modes of trapped ions. Chin. Phys. B 30, 060311 (2021).

    Article  CAS  Google Scholar 

  264. Nguyen, C.-H., Tseng, K.-W., Maslennikov, G., Gan, H. & Matsukevich, D. Experimental SWAP test of infinite dimensional quantum states. Preprint at arXiv arxiv.org/abs/2103.10219 (2021).

  265. Chen, W. et al. Scalable and programmable phononic network with trapped ions. Nat. Phys. 19, 877–883 (2023). This article demonstrates the beam-splitter interaction between two motional modes of trapped ions mediated by a qubit, which is an ingredient for simulating models with second-order vibronic couplings.

    Article  CAS  Google Scholar 

  266. Katz, O. & Monroe, C. Programmable quantum simulations of bosonic systems with trapped ions. Phys. Rev. Lett. 131, 033604 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Karplus, W. & Soroka, W. Analog Methods: Computation and Simulation (McGraw-Hill, 1959).

  268. Jackson, A. S. Analog Computation (McGraw-Hill, 1960).

  269. Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Department of Energy under Grant No. DE-SC0019400 (to H.N., S.N.C., J.L.Y., J.V., Z.Z. and D.N.B.), Grant No. 2127309 to the Computing Research Association for the Computing Innovation Fellows 2021 Project (to J.V.) and Grant No. DE-SC0019449 (to K.S. and J.W.). In addition, the authors acknowledge the support of the National Science Foundation STAQ Project Phy-181891 (to J.W. and K.R.B.) and the NSF Quantum Leap Challenge Institute for Robust Quantum Simulation Grant No. OMA-2120757 (to M.K., K.S., J.W. and K.R.B.). J.L.Y. acknowledges partial support from the Lewis-Sigler Institute for Integrative Genomics.

Author information

Authors and Affiliations

Authors

Contributions

M.K., H.N., S.N.C. and J.L.Y. led the overall project. M.K., H.N. and S.N.C performed the simulations presented. M.K., H.N., K.S., J.W. and J.V. prepared the figures. D.N.B. and K.R.B. developed the plan for the article and provided feedback. All authors contributed to discussions and writing the manuscript.

Corresponding authors

Correspondence to Mingyu Kang, David N. Beratan or Kenneth R. Brown.

Ethics declarations

Competing interests

K.R.B. is a scientific advisor for IonQ, Inc. and has a personal financial interest in the company. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thank the anonymous referees for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Nuomin, H., Chowdhury, S.N. et al. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00595-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00595-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing