Lasers, LEDs and light sources articles within Nature Communications

Featured

  • Article |

    Several techniques exist for patterning a single densely packed layer of quantum dots onto a surface. Kim et al.now demonstrate a simple and reliable technique for transferring multiple monolayers, one-by-one, to form stacked multilayers of quantum dots of different types and sizes on a surface.

    • Tae-Ho Kim
    • , Dae-Young Chung
    •  & Kinam Kim
  • Article
    | Open Access

    Two-photon-pumped dye lasers are useful for applications such as biological imaging; however, loss processes reduce their efficiency. Here, metal-organic frameworks, into which the laser dye is incorporated, demonstrate enhanced laser operation because losses such as dye aggregation-caused quenching are reduced.

    • Jiancan Yu
    • , Yuanjing Cui
    •  & Guodong Qian
  • Article
    | Open Access

    Optical reference cavities are important in precision time keeping and low-noise microwave generation. Here as a step towards their miniaturization, the authors demonstrate a chip-based reference cavity that uses a spiral geometry to improve stability by introducing thermal and mechanical immunity.

    • Hansuek Lee
    • , Myoung-Gyun Suh
    •  & Kerry J. Vahala
  • Article
    | Open Access

    Quantum state preparation of mesoscopic objects is a powerful tool for the study of physics at the limits. Here, Arita et al. realise the optical trapping of a microgyroscope rotating at MHz rates in vacuum where the coupling between the rotational and translational motion cools the particle to 40 K.

    • Yoshihiko Arita
    • , Michael Mazilu
    •  & Kishan Dholakia
  • Article
    | Open Access

    Semiconductor nanocrystals are of interest for microlasers that, for example, can be used for integrated photonics applications. Here, Grivas et al.demonstrate single-mode lasing in the single-exciton regime from core/shell CdSe/CdS quantum rods deposited on a single silica microsphere.

    • Christos Grivas
    • , Chunyong Li
    •  & Pavlos Lagoudakis
  • Article |

    Indium tin oxide, the predominant material used as transparent electrodes in organic LEDs, is expensive and brittle. Ning Li and colleagues form transparent electrodes using single-layer graphene to construct organic LEDs with unprecedented performance that are suitable for both displays and lighting.

    • Ning Li
    • , Satoshi Oida
    •  & Tze-Chiang Chen
  • Article |

    Customizing the output from a laser is typically done by appropriate optical elements. Here Ngcobo et al.show that a digitally controlled holographic mirror placed within the laser cavity can be used to dynamically select the desired laser output modes.

    • Sandile Ngcobo
    • , Igor Litvin
    •  & Andrew Forbes
  • Article
    | Open Access

    Phonon lasers are the acoustic equivalent to optical lasers. Here Maryam and colleagues study the dynamics of semiconductor phonon lasers operating in the terahertz frequency regime, and show that these dynamics are similar to that of comparable optical lasers.

    • W. Maryam
    • , A. V. Akimov
    •  & A. J. Kent
  • Article |

    Ultrafast laser pulses are useful to study electron dynamics in chemical bonds, but their influence on bond breaking is not fully understood. Wu et al. study H2 bond breaking with coincidence techniques, and find a phase-dependent anisotropy of the H+fragmentation even for isotropic multicycle laser pulses.

    • J. Wu
    • , M. Magrakvelidze
    •  & R. Dörner
  • Article |

    Compact, tunable terahertz sources are highly desired for sensing and imaging applications. Here Vijayraghavan et al. demonstrate room-temperature quantum cascade laser sources based on the non-linear optical conversion of mid-infrared light that provide a tunable output over a 3.5-THz bandwidth.

    • Karun Vijayraghavan
    • , Yifan Jiang
    •  & Mikhail A. Belkin
  • Article
    | Open Access

    Laser-plasma accelerators can produce high-energy electron bunches over just a few centimetres of distance, offering possible table-top accelerator capabilities. Wang et al.break the current 1 GeV barrier by applying a petawatt laser to accelerate electrons nearly monoenergetically up to 2 GeV.

    • Xiaoming Wang
    • , Rafal Zgadzaj
    •  & M. C. Downer
  • Article |

    Polymer light-emitting diodes promise cheap and flexible lighting and displays, but their fabrication is hindered by high-vacuum methods for creating cathodes. Zheng et al.show an all-solution processing approach to polymer diodes that removes this obstacle, offering roll-to-roll fabrication of devices.

    • Hua Zheng
    • , Yina Zheng
    •  & Yong Cao
  • Article |

    Ultrafast lasers are important in many fields of science, but they typically have high power consumption. Here Eigenwillig et al.realize picosecond laser pulses directly from a semiconductor-based laser. Due to the low repetition rate, high-energy pulses are generated at low average power.

    • Christoph M. Eigenwillig
    • , Wolfgang Wieser
    •  & Robert Huber
  • Article |

    Free-electron lasers offer exciting new possibilities for X-ray studies on ultrafast timescales, but their shot-to-shot variability requires new diagnostic tools. Using a plasma switch cross-correlator, Riedel et al. present a single-shot online diagnostic to retrieve the duration of extreme ultraviolet pulses.

    • R. Riedel
    • , A. Al-Shemmary
    •  & F. Tavella
  • Article |

    For quantum technologies to become widespread and scalable, bright sources of indistinguishable single photons are essential. Through deterministic positioning of quantum dots in pillar cavities, Gazzano et al.present a solid-state single-photon source with brightness as large as 0.65 photons per pulse.

    • O. Gazzano
    • , S. Michaelis de Vasconcellos
    •  & P. Senellart
  • Article |

    Light-emitting diodes are attractive sources of light used in an increasing range of applications. This study presents a novel europium-based phosphor that gives rise to a substantial reduction in the glare that often makes LEDs uncomfortable to the human eye.

    • Hisayoshi Daicho
    • , Takeshi Iwasaki
    •  & Hideo Hosono
  • Article
    | Open Access

    Microdisk lasers are useful for compact wavelength-scale photonic devices and circuits, but their operation by electrical injection can hamper their optical properties. Kimet al. show that a graphene-contact electrode provides efficient electrical injection while minimising optical losses.

    • Yoon-Ho Kim
    • , Soon-Hong Kwon
    •  & Hong-Gyu Park
  • Article |

    Molecules in intense laser fields have enhanced multiple ionization rates, caused by the ionic core and laser fields acting on the part of the molecule in the up-field. Here, direct proof of this model is presented by studying the instantaneous effect of the field direction during double ionization in ArXe.

    • J. Wu
    • , M. Meckel
    •  & R. Dörner
  • Article |

    Understanding ultrafast demagnetisation is key to manipulating magnetic structures on fast timescales, yet laser sources limit the attainable spatial resolution. Here, a soft X-ray high harmonic source enables a high temporal and spatial resolution study of domain demagnetisation in [Co/Pt]30multilayer films.

    • Boris Vodungbo
    • , Julien Gautier
    •  & Jan Lüning
  • Article |

    X-ray free-electron lasers offer a wealth of possibilities for future diffraction studies, but variations in successive pulses mean the wavefront is not well defined. Rutishauseret al. use grating interferometry to characterize the wavefronts shot to shot, both in situand under operating conditions.

    • Simon Rutishauser
    • , Liubov Samoylova
    •  & Christian David
  • Article
    | Open Access

    High-intensity laser-plasma ion generation is promising as a compact proton source for applications like ion beam therapy. Using a femtosecond table-top laser system, Zeilet al. show that protons efficiently gain energy in the pre-thermal intra-pulse phase of the generation process.

    • K. Zeil
    • , J. Metzkes
    •  & U. Schramm
  • Article
    | Open Access

    Stable, ultrahigh repetition rate optical clocks are critical for applications in high-speed communications, metrology and microchip computing. Pecciantiet al.present a mode-locked laser based on an integrated microcavity, with repetition rate exceeding 200 GHz and narrow linewidth pulses.

    • M. Peccianti
    • , A. Pasquazi
    •  & R. Morandotti
  • Article |

    Light-emitting diodes in the form of nanocrystals offer promise for environmental and biomedical diagnostics. Brovelliet al. present a method for realizing mechanically robust and chemically stable nanocrystals emitting light in the ultraviolet range.

    • Sergio Brovelli
    • , Norberto Chiodini
    •  & Alberto Paleari
  • Article |

    Optoelectronic devices such as conventional semiconductor lasers are used to study the chaotic behaviour of nonlinear systems. Here chaos is observed for quantum-dot microlasers operating close to the quantum limit with potential for new directions in the study of chaos in quantum systems.

    • Ferdinand Albert
    • , Caspar Hopfmann
    •  & Ido Kanter
  • Article
    | Open Access

    The phase of a laser pulse is usually random, which prevents its use for phase-resolved measurements. Here, the authors seed a quantum cascade laser with coherent terahertz pulses, forcing laser action to start on a fixed phase. This kind of laser could be used as a source in time-domain spectroscopy.

    • Dimitri Oustinov
    • , Nathan Jukam
    •  & Sukhdeep Dhillon